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a b s t r a c t

This paper establishes a novel method for the simultaneous analysis of moisture, active component
and cake structure of lyophilized powder for injection using diffuse reflectance Fourier transform near
infrared (FT-NIR) chemometrics. The experiment indicated that the back-propagation artificial neural
network (BP-ANN) was suitable for the content predictions of moisture and active component; the root
mean square errors of prediction (RMSEPs) were 0.1471 and 0.0082, the correlation coefficients (Rs) of
prediction 0.9553 and 0.9891. And the self-organizing map (SOM) was adapted to the discrimination of
eywords:
ourier transform near infrared
pectroscopy
oisture

ctive component

cake structures; the prediction accuracy was 100.0%.
© 2010 Elsevier B.V. All rights reserved.
ake structure
yophilized powder for injection

. Introduction

The determinations of moisture and active component of
yophilized powder for injection are necessary because residual

ater may drastically affect the drug stability and the content of
ctive component can indicate the drug effectivity [1]. On the other
and, the discrimination of lyophilized cake structures is also sig-
ificant [2].

In this work, we discussed the feasibility of the simultane-
us analysis of moisture, active component and cake structure of
yophilized powder for injection, such as lyophilized potassium
odium dehydroandroandrographolide succinate for injection,
ith diffuse reflectance FT-NIR chemometrics. And Karl–Fischer

itration (KFT) [3], high performance liquid chromatography (HPLC)
4] and visual inspection (VI) [2] were respectively used as the ref-
rence methods. BP-ANN [5] and the partial least square (PLS) [5]
ere contrastively used for the determinations of moisture and

ctive component, SOM [6] and the discriminant analysis (DA) [7]
or the discrimination of cake structures. To our knowledge, there

ave not so far been any publications focused on it.

∗ Corresponding author at: School of Pharmacy, Chongqing Medical University,
hongqing 400016, PR China. Tel.: +86 23 6848 5048; fax: +86 23 6848 5161.

E-mail address: fanqi787@yahoo.com.cn (Q. Fan).

731-7085/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2010.12.028
2. Experimental

2.1. Samples and materials

In the experiment, 115 samples of lyophilized powder for
injection (80 mg/vial) and the reference substance (lot number:
R0811066; purity: 97%, HPLC) of potassium sodium dehy-
droandroandrographolide succinate were prepared by Chongqing
Yaoyou Pharmaceutical Co., Ltd (Chongqing, China). Methanol was
HPLC grade, other chemicals were analytical grade and experimen-
tal water was purified water.

2.2. Instruments

The Fourier transform near infrared diffuse reflectance spectra
(NIRDRS) were measured by Antaris II FT-NIR analyzer (Thermo
Fisher Scientific, USA), furnished with an integrating sphere attach-
ment and controlled with the software package RESULT 3.0. The
reference values of moisture and active component were deter-
mined separately by DL31 Karl–Fischer titrator (Mettler Toledo,
Switzerland) and LC-2010A high performance liquid chromato-
graph (Shimadzu, Japan).
2.3. Reference methods

2.3.1. Determination of moisture contents
The reference values of moisture contents were obtained by KFT.

We divided the reference range of 85 samples, 0.68–2.66%, into

dx.doi.org/10.1016/j.jpba.2010.12.028
http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:fanqi787@yahoo.com.cn
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ve sub-ranges: 0.50–1.00%, 1.00–1.50%, 1.50–2.00%, 2.00–2.50%
nd 2.50–3.00%. The reference values of calibration set were
istributed over the five sub-ranges, while the reference val-
es of prediction set were distributed over the previous
our sub-ranges. And the reference range of 65 calibration
amples, 0.68–2.66%, covered that of 20 prediction samples,
.82–2.46%.

.3.2. Determination of the contents of active component
The reference values of the contents of active component,

otassium sodium dehydroandroandrographolide succinate, were
easured by HPLC. And the determination was performed on
Phenomenex Gemini C18 column (250 mm × 4.6 mm, 5 �m)
ith a mobile phase consisted of methanol-potassium dihydro-

en phosphate (pH 3.0; 0.05 mol/L) (64:36, v/v) at a flow rate of
.0 mL/min. The column temperature was maintained at 40 ◦C, the

njection volume was 20 �L, and the detection was completed
sing the ultraviolet detector at 251 nm. We divided 30 sam-
les into 25 calibration samples and 5 prediction samples using
procedure similar to that used in 2.3.1. The reference range of

alibration set, 0.6518–0.8632 g/g, covered that of prediction set,

.6666–0.8161 g/g.

.3.3. Discrimination of cake structures
The cake structures of 40 samples were discriminated by VI

n sealed cylindroid vials. The intact and defective cake subsets

ig. 2. Scatterplots for the moisture prediction models: (a) RMSECV values of the BP-AN
P-ANN model; (c) RMSECV values of the PLS model; (d) prediction values and reference
Fig. 1. Raw NIRDRS of lyophilized potassium sodium dehydroandroandro-
grapholide succinate for injection.
were constituted respectively by 30 samples with the intact porous
structure (20 for calibration, 10 for prediction) and 10 samples with
the defective porous structure (7 for calibration, 3 for prediction).
The calibration and prediction samples in two cake subsets were
randomly selected.

N model; (b) prediction values and reference values of the prediction set for the
values of the prediction set for the PLS model.
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Table 1
Optimal performances of the moisture prediction models using different preprocessing techniques.

Preprocessing techniquesa BP-ANN PLS

PCs RMSECV RMSEP Rb PCs RMSECV RMSEP Rb

No preprocess 4 0.2884 0.2031 0.8912 3 0.2826 0.2496 0.6882
MSC + first derivative 6 0.2687 0.1483 0.9427 1 0.2151 0.1628 0.9266
MSC + second derivative 8 0.2897 0.1921 0.8485 5 0.2267 0.1576 0.9293
SNV + first derivative 6 0.2376 0.1471 0.9553 1 0.2148 0.1639 0.9255
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0.7964.
Consequently, it is different from the content prediction of mois-

ture that the BP-ANN model is better than the PLS model for the
content prediction of active component. The imaginable reason is
SNV + second derivative 8 0.2778 0.1908

a 7-point Savitzky–Golay smoothing and mean centering were included in each i
b R was only for the prediction set.

.4. NIR method

The NIRDRS of 115 samples were directly acquired in sealed
ylindroid vials. Each spectrum was the average of 64 scans at
cm−1 resolution over the range 10 000–4000 cm−1 at 22 ± 1 ◦C and
5 ± 5% RH. The measurement background, the gold-plated inner
all of the integrating sphere, was also measured to automatically
educt the interferences of water vapor and CO2 in air.

. Results and discussion

The raw NIRDRS were shown in Fig. 1.

.1. Prediction of moisture contents

The spectral sub-ranges, which were used to build the BP-
NN and PLS models, were automatically selected with the
hemometric software TQ Analyst 8.0 (Thermo Fisher Scientific,
SA). The regions were 8642–8217 cm−1, 7523–6206 cm−1 and
391–4948 cm−1.

To build the BP-ANN model, having low values of root mean
quare error of cross validation (RMSECV) and RMSEP, the NIR-
RS were preprocessed by standard normal variate (SNV), 7-point
avitzky–Golay smoothing (5-, 7- and 9-point widths had been
ompared), first derivative and mean centering with TQ Analyst
.0 (Table 1). The BP-ANN was built using three layers: an input

ayer which nodes represented the principle components (PCs) of
he NIRDRS data for moisture content, an output layer with one
ode representing the prediction value of moisture content and
ne hidden layer [8]. The results were indicated in Fig. 2(a and
) and Table 1. Fig. 2(a) shows that the minimum RMSECV value
as 0.2376 for 6 input nodes and 5 hidden nodes while the goal

rror between the training network output and the ideal output
as defined as 0.05, that is, the optimal architecture of the BP-ANN
as 6-5-1. Table 1 indicates that the BP-ANN had the low RMSEP

alue 0.1471 and the high R value 0.9553. And Fig. 2(b) displays the
inear relation for the prediction set, y = 0.9381x + 0.0726. The BP-
NN algorithm was implemented by the mathematical modeling
oftware Matlab 6.5 (The MathWorks, USA).

To build the PLS model, the NIRDRS were processed by
ultiplicative signal correction (MSC), 7-point Savitzky–Golay

moothing, second derivative and mean centering (Table 1). PCs
f the NIRDRS data for moisture content were used as the factors
or the PLS model. The results were indicated in Fig. 2(c and d) and
able 1. Fig. 2(c) describes that the minimum RMSECV value was
.2267 as long as the number of factors was 5. In Table 1, the PLS
ad the low RMSEP value 0.1576 and the high R value 0.9293. And
ig. 2(d) demonstrates the linear relation for the prediction set,

= 0.8054x + 0.3055. The PLS algorithm was implemented using TQ
nalyst 8.0.

The above discussion indicate that both of the BP-ANN and of the
LS models can be used to predict moisture contents of lyophilized
owder for injection though the prediction performances of
0.9021 5 0.2266 0.1580 0.9293

tion of preprocessing techniques.

the BP-ANN model were slightly better than those of the PLS
model.

3.2. Prediction of the contents of active component

The contents of active component were predicted with the strat-
egy similar to that used in 3.1. Three sub-ranges of the NIRDRS,
6995–6730 cm−1, 6283–5127 cm−1 and 4873–4529 cm−1, were
selected to build the BP-ANN and PLS models.

For the BP-ANN model, the used preprocessing techniques
included MSC, 5-point Savitzky–Golay smoothing, first derivative
and mean centering; the optimal architecture of the BP-ANN was
7-4-1 and the minimum RMSECV value was 0.0470 when the goal
error was defined as 0.001; the RMSEP was 0.0082 and the R of
prediction for the equation, y = 1.0366x − 0.0204, was 0.9891.

As for the PLS model, the used preprocessing techniques
included MSC, 5-point Savitzky–Golay smoothing, second deriva-
tive and mean centering; the minimum RMSECV value was 0.0479
as long as the number of factors was 3; the RMSEP was 0.0242
and the R of prediction for the equation, y = 0.6788x + 0.2620, was
Fig. 3. Distribution map of the SOM (10 × 10) for cake structures: light gray blocks
for intact cake subset (A, a) and dark gray blocks for defective cake subset (B, b);
capitals (A, B) for calibration samples and lowercases (a, b) for prediction samples.
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ig. 4. Projection map of the DA of the calibration samples for cake structures.

hat the NIR absorptions of active component are more complex
nd weaker than H2O. BP-ANN, which is a non-linear method, may
e more suitable to handle complex situation than PLS, which is a

inear method, because it has stronger abilities of self-learning and
elf-adjust.

.3. Prediction of cake structures

For the SOM and DA models, the full NIRDRS (10
00–4000 cm−1) were selected automatically to build the models,
rocessed by 7-point Savitzky–Golay smoothing, first derivative
nd mean centering, and reduced to 10 PCs which cumulative
ontribution rate was more than 97%, with TQ Analyst 8.0. The
esults were shown in Figs. 3 and 4.

In Fig. 3, the intact and defective cake subsets, not only calibra-
ion but also prediction samples, were completely separated into

wo areas without any errors. That is, the prediction accuracy of
he SOM model was 100.0%. The SOM algorithm was implemented
sing Matlab 6.5.

Fig. 4 demonstrates that the calibration samples with the intact
nd defective porous structures were logically distributed with the

[

[
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DA into two separate two-dimensional zones. The performance
index of the DA model was 86.8%. The DA algorithm was done using
TQ Analyst 8.0.

The results show that both of the SOM and of the DA models can
be used to discriminate lyophilized cake structures although the
prediction performances and the visualization function of the SOM
model were better than those of the DA model.

4. Conclusion

The experiment has proved that moisture, active component
and cake structure of lyophilized powder for injection can be simul-
taneously predicted by analyzing its NIRDRS with chemometrics:
the BP-ANN models showed good performances for content predic-
tions of moisture and active component; the SOM model appeared
excellent prediction performances and visualization function for
the discrimination of cake structures. Additionally, this dataset
could be available for interested researchers to test new chemo-
metric algorithms.
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